37 research outputs found

    Proactive detection of DDOS attacks in Publish-Subscribe networks

    Get PDF
    Information centric networking (ICN) using architectures such as Publish-Subscribe Internet Routing Paradigm (PSIRP) or Publish-Subscribe Internet Technology (PURSUIT) has been proposed as an important candidate for the Internet of the future. ICN is an emerging research area that proposes a transformation of the current host centric Internet architecture into an architecture where information items are of primary importance. This change allows network functions such as routing and locating to be optimized based on the information items themselves. The Bloom filter based content delivery is a source routing scheme that is used in the PSIRP/PURSUIT architectures. Although this mechanism solves many issues of today’s Internet such as the growth of the routing table and the scalability problems, it is vulnerable to distributed denial-of-service (DDoS) attacks. In this paper, we present a new content delivery scheme that has the advantages of Bloom filter based approach while at the same time being able to prevent DDoS attacks on the forwarding mechanism. Our security analysis suggests that with the proposed approach, the forwarding plane is able to resist attacks such as DDoS with very high probabilit

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future

    Prediction of Quality of Experience for Video Streaming Using Raw QoS Parameters

    Get PDF
    Along with the rapid growth in consumer adoption of modern portable devices, video streaming is expected to dominate a large share of the global Internet traffic in the near future. Today user experience is becoming a reliable indicator for video service providers and telecommunication operators to convey overall end-to-end system functioning. Towards this, there is a profound need for an efficient Quality of Experience (QoE) monitoring and prediction. QoE is a subjective metric, which deals with user perception and can vary due to the user expectation and context. However, available QoE measurement techniques that adopt a full reference method are impractical in real-time transmission since they require the original video sequence to be available at the receiver’s end. QoE prediction, however, requires a firm understanding of those Quality of Service (QoS) factors that are the most influential on QoE. The main aim of this thesis work is the development of novel and efficient models for video quality prediction in a non-intrusive way and to demonstrate their application in QoE-enabled optimisation schemes for video delivery. In this thesis, the correlation between QoS and QoE is utilized to objectively estimate the QoE. For this, both objective and subjective methods were used to create datasets that represent the correlation between QoS parameters and measured QoE. Firstly, the impact of selected QoS parameters from both encoding and network levels on video QoE is investigated. The obtained QoS/QoE correlation is backed by thorough statistical analysis. Secondly, the development of two novel hybrid non-reference models for predicting video quality using fuzzy logic inference systems (FIS) as a learning-based technique. Finally, attention was move onto demonstrating two applications of the developed FIS prediction model to show how QoE is used to optimise video delivery

    Intelligent Botnet Detection Approach in Modern Applications

    No full text
    Innovative applications are employed to enhance human-style life. The Internet of Things (IoT) is recently utilized in designing these environments. Therefore, security and privacy are considered essential parts to deploy and successful intelligent environments. In addition, most of the protection systems of IoT are vulnerable to various types of attacks. Hence, intrusion detection systems (IDS) have become crucial requirements for any modern design. In this paper, a new detection system is proposed to secure sensitive information of IoT devices. However, it is heavily based on deep learning networks. The protection system can provide a secure environment for IoT. To prove the efficiency of the proposed approach, the system was tested by using two datasets; normal and fuzzification datasets. The accuracy rate in the case of the normal testing dataset was 99.30%, while was 99.42% for the fuzzification testing dataset. The experimental results of the proposed system reflect its robustness, reliability, and efficiency

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future

    CCrFS: Combine Correlation Features Selection for Detecting Phishing Websites Using Machine Learning

    No full text
    Internet users are continually exposed to phishing as cybercrime in the 21st century. The objective of phishing is to obtain sensitive information by deceiving a target and using the information for financial gain. The information may include a login detail, password, date of birth, credit card number, bank account number, and family-related information. To acquire these details, users will be directed to fill out the information on false websites based on information from emails, adverts, text messages, or website pop-ups. Examining the website’s URL address is one method for avoiding this type of deception. Identifying the features of a phishing website URL takes specialized knowledge and investigation. Machine learning is one method that uses existing data to teach machines to distinguish between legal and phishing website URLs. In this work, we proposed a method that combines correlation and recursive feature elimination to determine which URL characteristics are useful for identifying phishing websites by gradually decreasing the number of features while maintaining accuracy value. In this paper, we use two datasets that contain 48 and 87 features. The first scenario combines power predictive score correlation and recursive feature elimination; the second scenario is the maximal information coefficient correlation and recursive feature elimination. The third scenario combines spearman correlation and recursive feature elimination. All three scenarios from the combined findings of the proposed methodologies achieve a high level of accuracy even with the smallest feature subset. For dataset 1, the accuracy value for the 10 features result is 97.06%, and for dataset 2 the accuracy value is 95.88% for 10 features

    Impact of Packet Loss on 4K UHD Video for Portable Devices

    Get PDF
    Ultra High Definition (UHD) video streaming to portable devices has become topical. Two standardized codecs are current, H.264/Advanced Video Coding (AVC) and the more recent High Efficiency Video Coding (HEVC). This paper compares the two codecs’ robustness to packet loss, after making allowances for relative coding gain. A significant finding from the comparison is that the H.264/AVC codec is less impacted by packet loss than HEVC, despite their differing coding efficiencies and including at low levels of packet loss. The results will be especially relevant to those designing portable devices with 4K UHD video display capability, allowing them to estimate the level of error concealment necessary. The paper also includes the results of HEVC compressed UHD video streaming over an IEEE 802.11ad wireless link operating at 60 GHz as a pointer to future performance in an error-prone channel

    Prediction of Perceptual Quality for Mobile Video Using Fuzzy Inference Systems

    No full text
    Along with the rapid growth in consumer adoption of modern portable devices, video streaming is expected to dominate a large share of the global internet traffic in the near future. In the wireless communications domain, this trend creates considerable challenges to consumers’ quality of experience (QoE). From a consumer-focused vision, predicting perceptual video quality is extremely important for QoE-based service provisioning. However, available QoE measurement techniques that adopt a full reference model are impractical in real-time transmission since they require the original video sequence to be available at the receiver’s end. Therefore, the primary aim of this study is to present a cross-layer no-reference prediction model for the perceptual quality of 3D video in the wireless domain. The contributions of this study are twofold: first, the impact of selected quality of service (QoS) parameters from both encoding and network levels on QoE is investigated. Also, the obtained QoS/QoE correlation is backed by thorough statistical analysis. Second, a prediction model based on fuzzy logic inference systems (FIS) is developed by mapping chosen QoS parameters to the measured QoE. This model enables a non-intrusive prediction of 3D visual quality. Conclusive results show a significantly high correlation between the predicted video quality and the objectively measured mean opinion scores (MOS). Objective MOS is also validated through methodical subjective assessments. For consumer’s QoE, this study advances the development of reference-free video quality prediction models and QoE control methods for 3D video streaming

    Packet loss visibility for higher resolution video on portable devices

    Get PDF
    After adjusting for coding gain between the H.264 and HEVC codecs, a comparison is made between the two codecs' robustness to packet loss. A counter-intuitive finding arises that the less efficient codec is less affected by packet loss than the more efficient codec, even at very low levels of packet loss. The findings will be of interest to those designing portable devices that can display up to 4kUHD video
    corecore